Image from Google Jackets

Sub - Riemannian Geometry : General Theory and Examples / by O. Calin and D. C. Chang. [Electronic Resource]

By: Material type: Computer fileComputer fileSeries: Encyclopedia of Mathematics and its ApplicationsPublication details: Cambridge : Cambridge University Press, 2009Description: xiv, 370pISBN:
  • 9781139195966
Related works:
  • Chang, D. C. [Author]
Subject(s): DDC classification:
  • 516.373 C129S
Online resources: Summary: Sub-Riemannian manifolds are manifolds with the Heisenberg principle built in. This comprehensive text and reference begins by introducing the theory of sub-Riemannian manifolds using a variational approach in which all properties are obtained from minimum principles, a robust method that is novel in this context. The authors then present examples and applications, showing how Heisenberg manifolds (step 2 sub-Riemannian manifolds) might in the future play a role in quantum mechanics similar to the role played by the Riemannian manifolds in classical mechanics. Sub-Riemannian Geometry: General Theory and Examples is the perfect resource for graduate students and researchers in pure and applied mathematics, theoretical physics, control theory, and thermodynamics interested in the most recent developments in sub-Riemannian geometry.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Notes Date due Barcode Item holds
e-Book e-Book S. R. Ranganathan Learning Hub Online Textbook 516.373 C129S (Browse shelf(Opens below)) Available Platform : Cambridge Core EB0412
Total holds: 0

Sub-Riemannian manifolds are manifolds with the Heisenberg principle built in. This comprehensive text and reference begins by introducing the theory of sub-Riemannian manifolds using a variational approach in which all properties are obtained from minimum principles, a robust method that is novel in this context. The authors then present examples and applications, showing how Heisenberg manifolds (step 2 sub-Riemannian manifolds) might in the future play a role in quantum mechanics similar to the role played by the Riemannian manifolds in classical mechanics. Sub-Riemannian Geometry: General Theory and Examples is the perfect resource for graduate students and researchers in pure and applied mathematics, theoretical physics, control theory, and thermodynamics interested in the most recent developments in sub-Riemannian geometry.

There are no comments on this title.

to post a comment.