Image from Google Jackets

Perturbation Methods / by E. J. Hinch. [Electronic Resource]

By: Material type: Computer fileComputer filePublication details: Cambridge : Cambridge University Press, 1991Description: xi, 160pISBN:
  • 9781139172189
Subject(s): DDC classification:
  • 515.35 H581P
Online resources: Summary: Perturbation methods are one of the fundamental tools used by all applied mathematicians and theoretical physicists. In this book, the author has managed to present the theory and techniques underlying such methods in a manner which will give the text wide appeal to students from a broad range of disciplines. Asymptotic expansions, strained coordinates and multiple scales are illustrated by copious use of examples drawn from all areas of applied mathematics and theoretical physics. The philosophy adopted is that there is no single or best method for such problems, but that one may exploit the small parameter given some experience and understanding of similar perturbation problems. The author does not look to perturbation methods to give quantitative answers but rather to give a physical understanding of the subtle balances in a complex problem.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Notes Date due Barcode Item holds
e-Book e-Book S. R. Ranganathan Learning Hub Online Textbook 515.35 H581P (Browse shelf(Opens below)) Available (e-Book For Access) Platform : Cambridge Core EB0429
Total holds: 0

Perturbation methods are one of the fundamental tools used by all applied mathematicians and theoretical physicists. In this book, the author has managed to present the theory and techniques underlying such methods in a manner which will give the text wide appeal to students from a broad range of disciplines. Asymptotic expansions, strained coordinates and multiple scales are illustrated by copious use of examples drawn from all areas of applied mathematics and theoretical physics. The philosophy adopted is that there is no single or best method for such problems, but that one may exploit the small parameter given some experience and understanding of similar perturbation problems. The author does not look to perturbation methods to give quantitative answers but rather to give a physical understanding of the subtle balances in a complex problem.

There are no comments on this title.

to post a comment.