Image from Google Jackets

Colloidal Particles at Liquid Interfaces / by Bernard P. Binks and Tommy S. Horozov. [Electronic Resource]

By: Material type: Computer fileComputer filePublication details: Cambridge : Cambridge University Press, 2006Description: xiv, 503pISBN:
  • 9780511536670
Related works:
  • Horozov, Tommy S. [Author]
Subject(s): DDC classification:
  • 541.345 B514C
Online resources: Summary: Small solid particles adsorbed at liquid interfaces arise in many industrial products and process, such as anti-foam formulations, crude oil emulsions and flotation. They act in many ways like traditional surfactant molecules, but offer distinct advantages. However, the understanding of how these particles operate in such systems is minimal. This book brings together the diverse topics actively being investigated, with contributions from leading experts in the field. After an introduction to the basic concepts and principles, the book divides into two sections. The first deals with particles at planar liquid interfaces, with chapters of an experimental and theoretical nature. The second concentrates on the behaviour of particles at curved liquid interfaces, including particle-stabilized foams and emulsions and new materials derived from such systems. This collection will be of interest to academic researchers and graduate students in chemistry, physics, chemical engineering, pharmacy, food science and materials science.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Notes Date due Barcode Item holds
e-Book e-Book S. R. Ranganathan Learning Hub Online Textbook 541.345 B514C (Browse shelf(Opens below)) Available Platform : Cambridge Core EB0300
Total holds: 0

Small solid particles adsorbed at liquid interfaces arise in many industrial products and process, such as anti-foam formulations, crude oil emulsions and flotation. They act in many ways like traditional surfactant molecules, but offer distinct advantages. However, the understanding of how these particles operate in such systems is minimal. This book brings together the diverse topics actively being investigated, with contributions from leading experts in the field. After an introduction to the basic concepts and principles, the book divides into two sections. The first deals with particles at planar liquid interfaces, with chapters of an experimental and theoretical nature. The second concentrates on the behaviour of particles at curved liquid interfaces, including particle-stabilized foams and emulsions and new materials derived from such systems. This collection will be of interest to academic researchers and graduate students in chemistry, physics, chemical engineering, pharmacy, food science and materials science.

There are no comments on this title.

to post a comment.