Image from Google Jackets

Fundamentals of the Finite Element Method for Heat and Fluid Flow / by R. W. Lewis and others. [Electronic Resource]

By: Material type: Computer fileComputer filePublication details: Chichester : Wiley, 2004Description: xiv, 341pISBN:
  • 9780470014165
Related works:
  • Nithiarasu, P. [Author]
  • Seetharamu, K. N. [Author]
Subject(s): DDC classification:
  • 621.4022 L586F
Online resources: Summary: Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Notes Date due Barcode Item holds
e-Book e-Book S. R. Ranganathan Learning Hub Online Textbook 621.4022 L586F (Browse shelf(Opens below)) Available (e-Book For Access) Platform : Wiley EB0006
Total holds: 0

This book: Is ideal for teaching senior undergraduates the fundamentals of how to use the Finite Element Method to solve heat transfer and fluid dynamics problems Explains how to solve various heat transfer problems with different types of boundary conditions Uses recent computational methods and codes to handle complex fluid motion and heat transfer problems Includes a large number of examples and exercises on heat transfer problems

Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully.

There are no comments on this title.

to post a comment.